Dimension reduction for compressible Navier–Stokes equations with density-dependent viscosity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressible Flows with a Density-Dependent Viscosity Coefficient

We prove the global existence of weak solutions for the 2-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient (λ = λ(ρ)). Initial data and solutions are small in energy-norm with nonnegative densities having arbitrarily large sup-norm. Then, we show that if there is a vacuum domain at the initial time, then the vacuum domain will retain for all time, and vanish...

متن کامل

Global solutions of compressible Navier–Stokes equations with a density–dependent viscosity coefficient

We prove the global existence and uniqueness of the classical (weak) solution for the 2D or 3D compressible Navier–Stokes equations with a density–dependent viscosity coefficient (λ = λ(ρ)). Initial data and solutions are only small in the energy-norm. We also give a description of the large time behavior of the solution. Then, we study the propagation of singularities in solutions. We obtain t...

متن کامل

Global Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations with Density-Dependent Viscosity

We consider the exterior problem and the initial boundary value problem for the spherically symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient in this paper. For regular initial density, we show that there exists a unique global strong solution to the exterior problem or the initial boundary value problem, respectively. In particular, the stro...

متن کامل

Vacuum Behaviors around Rarefaction Waves to 1D Compressible Navier-Stokes Equations with Density-Dependent Viscosity

In this paper, we study the large time asymptotic behavior toward rarefaction waves for solutions to the 1-dimensional compressible Navier-Stokes equations with density-dependent viscosities for general initial data whose far fields are connected by a rarefaction wave to the corresponding Euler equations with one end state being vacuum. First, a global-in-time weak solution around the rarefacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2020

ISSN: 1029-242X

DOI: 10.1186/s13660-020-02405-w